Identification of two toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channel

Neil A. Castle and Peter N. Strong*

MRC Receptor Mechanisms Research Group, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, England

Received 18 September 1986; revised version received 16 October 1986

Two polypeptide toxins from scorpion (Leiurus quinquestriatus) venom which block distinct classes of calcium-activated potassium channels have been identified and partially purified. One toxin, at 50-100 ng/ml, blocks apamin-sensitive potassium fluxes in hepatocytes and inhibits [125]monoiodoapamin binding. The other, more basic, toxin blocks apamin-insensitive potassium fluxes in erythrocytes at 200 ng/ml and, to our knowledge, is the first toxin shown to block the erythrocyte calcium-activated potassium channel with high affinity. The possible co-identity of this latter toxin with charybdotoxin is discussed.

(Leiurus quinquestriatus) Apamin Charybdotoxin Ca²⁺ activation K⁺ channel

1. INTRODUCTION

Of the many types of transmembrane K⁺ channels, those activated by a rise in cytosolic Ca²⁺ are of great current interest. They are a heterogeneous group which can be distinguished both on the basis of their unitary conductance and on their sensitivity to blockade by specific peptide toxins. Apamin, a peptide present in bee venom, has been shown to block, with high affinity, the Ca²⁺-activated K⁺ channels (J_(Ca) channels) found in guinea-pig hepatocytes, intestinal smooth muscle, embryonic skeletal muscle as well as in certain neuronally derived tissues [1-5]. More recently another peptide toxin, charybdotoxin, which is a minor component of Leiurus quinquestriatus (LQ) scorpion venom, has been reported to block the large conductance, apamin-insensitive $K_{(Ca)}$ channel ('BK' channel) in skeletal muscle T-tubules and cultured mammalian kidney cells [6,7]. Crude LQ venom has also recently been shown to block apamin-

* To whom correspondence should be addressed

sensitive K^+ movements in guinea-pig hepatocytes and the apamin-insensitive $K_{(Ca)}$ channel of intermediate conductance found in erythrocytes [8].

This report describes the identification of two toxins present in LQ venom which specifically block either the apamin-sensitive $K_{(Ca)}$ channel in guinea-pig hepatocytes or the apamin-insensitive $K_{(Ca)}$ channel in human erythrocytes. The latter toxin is the most effective blocker of the erythrocyte $K_{(Ca)}$ channel yet identified.

MATERIALS AND METHODS

2.1. Materials

L. quinquestriatus hebraeus venom was obtained from Latoxan, Rosans, France. Apamin was purified from Apis mellifera venom [9] and [125] [125] [136] monoiodoapamin was prepared and purified as described [10]. Chromatography media were purchased from LKB and Pharmacia, and A23187 and angiotensin II were obtained from Sigma.

2.2. Fractionation of L. quinquestriatus venom

Crude venom (140 mg) was extracted with distilled water and centrifuged as in [6]. The supernatant was chromatographed on an S-Sepharose ion-exchange column (7×0.9 cm) equilibrated with 0.01 M NH₄OAc, pH 7.0. The column was washed with equilibration buffer until the UV absorbance returned to baseline and was then eluted with a linear salt gradient of NH₄OAc (0.01-0.8 M, 200 ml total volume). 1 ml fractions were collected at a flow rate of 12 ml/h.

Peak X (see later) was diluted $4 \times$ with distilled water and re-applied (final volume, 55 ml) to a CM-Trisacryl ion-exchange column (4×0.6 cm), equilibrated with 0.05 M sodium phosphate buffer, pH 7.4. After washing off unbound material, the column was eluted with a linear salt gradient of NaCl (0-0.8 M, 400 ml total volume) in equilibration buffer. 1 ml fractions were collected at a flow rate of 12 ml/h. Protein concentrations were determined according to Lowry et al. [11].

Crude venom and semi-purified fractions were analysed by SDS-PAGE using a Laemmli buffer system as modified by Fling and Gregerson [12] for analysis of low- M_r polypeptides.

2.3. Preparation of hepatocytes and erythrocytes

Hepatocytes were prepared from male Hartley guinea-pigs by collagenase digestion [1]. Cells were incubated and experiments carried out at 37°C in Eagles MEM (Wellcome) supplemented with 2% bovine serum albumin and 10% new-born calf serum at a density of approx. 1×10^7 cells/ml.

Erythrocytes from freshly drawn human blood were separated from plasma, platelets and leucocytes by sedimentation in Dextran 70 (6%, w/v, in saline) and resuspended to a haematocrit of 7% in a medium containing (mM): NaCl, 145; KCl, 0.1; MgCl₂, 1; CaCl₂, 1; Tris-HCl, 10 (pH 7.4 at 37°C) and inosine, 10 [13].

2.4. Potassium efflux experiments

Net K⁺ fluxes from hepatocytes or erythrocytes were measured using a K⁺-sensitive electrode placed in the cell suspension [1]. Crude LQ venom components to be tested for inhibition of agonist-induced K⁺ loss were incubated with 2 ml of cell suspension for 2 min at 37°C before addition of agonist. The stimuli for K⁺ release from hepatocytes and erythrocytes were angiotensin II

(100 nM) and the calcium ionophore, A23187 (5 μ M) respectively. K⁺ loss in the first 30 s for hepatocytes (3 min for erythrocytes) after agonist application was expressed as a percentage of total cell content, evaluated for each aliquot of cells by the subsequent addition 100 μ M digitonin [13].

2.5. Competition binding experiments with [125] [Imonoiodoapamin]

Hepatocytes (0.3 ml) were incubated with 0.2 ml of incubation medium containing [¹²⁵I]monoiodo-apamin (final concentration 100 pM) and varying concentrations of LQ-VIII for 2 min at 37°C. Cell-associated [¹²⁵I]monoiodoapamin was separated from free labelled apamin by rapid centrifugation of the cells through di(*n*-butyl)phthalate [13,14].

2.6. Analysis of data

IC₅₀ values were obtained from dose-inhibition curves fitted with the Hill equation using a least-squares computer fit [15]. The fitted Hill coefficients $(n_{\rm H})$ were found to be significantly less than 1 $(n_{\rm H}=0.59-0.70)$ except for the displacement of [¹²⁵I]monoiodoapamin $(n_{\rm H}=0.99)$ and the inhibition of K⁺ loss, by LO-VIII $(n_{\rm H}=0.94)$.

3. RESULTS

Crude LQ venom inhibited both angiotensin II stimulated K^+ efflux from guinea-pig hepatocytes and A23187-induced K^+ loss from erythrocytes with a similar potency, the IC₅₀ values being 7.2 and 8.7 μ g/ml, respectively. This confirms the work of Abia et al. [8].

Ion-exchange chromatography of the crude venom on S-Sepharose produced ten distinct components (LQ-I to LQ-X, fig.2A) in addition to the material which did not bind to the column under the initial elution conditions (this represented approx. 75% of the absorption at $A_{278 \text{ nm}}$ in the venom and is not shown in fig.2A). The peak fraction of each component (diluted 100-fold) was assayed for its ability to block K+ fluxes from both cell types and the results expressed in terms of the amount of $A_{278 \text{ nm}}$ absorption of each fraction. Both the hepatocyte and erythrocyte K+ blocking activities were clearly resolved chromatographic procedure (fig. 2B). Nearly all hepatocyte K⁺ flux blocking activity was recovered in LQ-VIII, while the majority of the erythrocyte

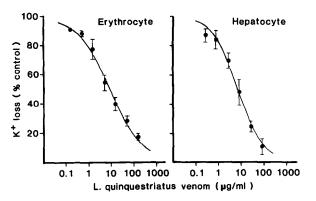
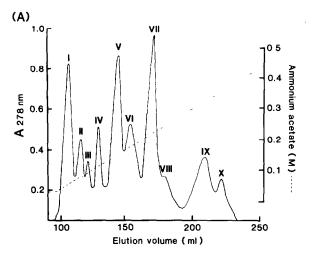



Fig. 1. Inhibition of A23187 (5 μ M)-stimulated net K⁺ loss from human erythrocytes and angiotensin II (100 nM)-induced net K⁺ efflux from guinea-pig hepatocytes by crude *L. quinquestriatus* venom. K⁺ loss is expressed as the % of cell K⁺ lost during the first 30 s (for hepatocytes) or 3 min (for erythrocytes) after exposure to the respective agonists. Points are means ± SE from 3 experiments.

blocking activity was found in LQ-X, with smaller amounts occurring in peaks I-IV.

Individual fractions of LQ-X were pooled diluted with distilled water to reduce the ionic strength and re-chromatographed on a CM-Trisacryl ion-exchange column (fig.3A). Approximately half of the UV-absorbing material (LQ-X/1) did not bind to the column and was devoid of biological activity. A single peak eluted (at ~0.1 M NaCl) after application of a salt gradient. LQ-X/2 retained all the original channel blocking activity of LQ-X and inhibited A23187-stimulated K⁺ loss from erythrocytes with an IC₅₀ of 198 ng/ml which represented a 44-fold increase in activity compared with the crude venom.

LQ-VIII, which appeared as a shoulder on LQ-VII, possessed more than 95% of the hepatocyte K^+ flux blocking activity present in the crude venom and exhibited an IC_{50} of 132 ng/ml (fig.4). To establish whether the inhibitory action of LQ-VIII was similar in nature to that reported for apamin, the effect of the toxin on [125 I]monoiodo-apamin binding was also examined. LQ-VIII clearly inhibited [125 I]monoiodoapamin binding (fig.4); the IC_{50} of 54 ng/ml being in good agreement with the data from the K^+ flux assay. This suggested that the action of the toxin related to the blockade of a $K_{(Ca)}$ channel and not, for example, to the antagonism of angiotensin II receptors.

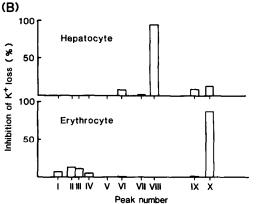


Fig. 2. (A) S-Sepharose ion-exchange chromatography of L. quinquestriatus venom. (B) Effect of individual peaks (100-fold dilution) on angiotensin II (100 nM)-induced K^+ loss from guinea-pig hepatocytes and A23187 (5 μ M)-induced K^+ efflux from human erythrocytes. % inhibition is expressed in terms of the amount of absorption at A_{27a} nm of each fraction.

Molecular mass analysis, using SDS-PAGE (Fig.5), showed that, although the crude venom consisted mainly of peptides of 6-8 kDa, the minor venom components, LQ-VIII and LQ-X12, appeared to be considerably smaller (4-5 kDa). The higher molecular mass band present in LQ-VIII possibly reflected contamination with LQ-VII.

It is interesting to note that crude LQ venom (100 µg/ml) did not compete with [¹²⁵I]monoiodo-apamin for apamin antibodies in a competitive radioimmunoassay (not shown) indicating that there was probably no immunological cross-reac-

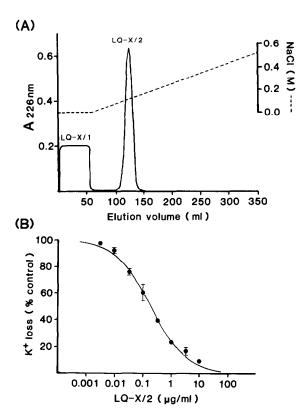


Fig. 3. (A) CM-Trisacryl ion-exchange chromatography of LQ-X. (B) Inhibition of A23187 (5 μM)-stimulated K⁺ loss from human erythrocytes by LQ-X/2. Points are means ± SE from 3 experiments.

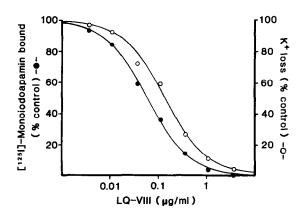


Fig. 4. Comparison of the ability of LQ-VIII to inhibit [125I]monoiodoapamin binding to, and angiotensin II-stimulated net K⁺ loss from, guinea-pig hepatocytes.

Points are the means of 2-3 observations.

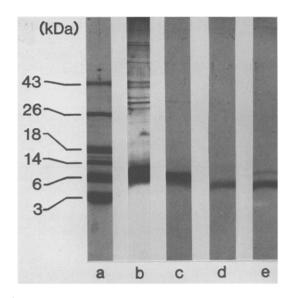


Fig. 5. SDS-PAGE of crude L. quinquestriatus venom and partially purified $K_{(Ca)}$ channel blocking toxins. Lanes: (a) molecular mass markers, (b,c) crude venom, (d) LQ-X/2, (e) LQ-VIII. The sample in lane b was visualised by silver staining [16] and all other tracks were stained with Coomassie blue.

tivity between the bee venom toxin and the apamin-like component of the scorpion venom.

DISCUSSION

This study has shown that LQ venom contains two distinct toxins which block different classes of $K_{(Ca)}$ channel. Assuming a molecular mass of 5 kDa and 100% purity (clearly an overestimate), IC₅₀ values of ~ 20 and ~ 40 nM can be obtained for the apamin-like hepatocyte K_(Ca) channel blocking toxin (LQ-VIII) and for the erythrocyte $K_{(Ca)}$ channel blocking toxin (LQ-X/2), respectively. These values are upper estimates and are likely to be lower when the toxins have been purified to homogeneity. They are, however, in the same range as the K_d (10 nM) reported for charybdotoxin in mammalian T-tubules [6]. At present it is unclear if either of the two toxins identified in this study corresponds to charybdotoxin. The erythrocyte K_(Ca) channel blocking toxin is probably the more likely candidate since like charybdotoxin, it elutes as the most basic polypeptide in its fractionation procedure. Furthermore, a recent report has shown that Aplysia K_(Ca) channels, which have

an intermediate unitary conductance (20-40 pS) similar to that of erythrocytes, are also blocked by charybdotoxin [17]. LQ-X/2, whether or not identical to charybdotoxin, still represents the first toxin shown to block the erythrocyte $K_{(Ca)}$ channel with high affinity.

Apamin has been frequently used to define one class of $K_{(Ca)}$ channel. It will be extremely interesting to see whether the new apamin-like scorpion venom toxin that blocks hepatocyte $K_{(Ca)}$ channels also blocks all other apamin-sensitive channels; since the two toxins appear to be structurally unrelated (by both size and immunological criteria) they may allow subtle differences in these channels to be detected.

ACKNOWLEDGEMENTS

We thank Dr D.G. Haylett and Dr C. Miller for helpful discussions, Anne Field and Christine Sandford for their help in preparing hepatocytes and the MRC for their financial support; N.A.C. holds an MRC research studentship.

REFERENCES

- [1] Burgess, G.M., Claret, M. and Jenkinson, D.H. (1981) J. Physiol. (London), 317, 67-90.
- [2] Banks, B.E.C., Brown, C., Burgess, G.M., Burnstock, G., Claret, M., Cocks, T.M. and Jenkins, D.H. (1979) Nature 282, 415-417.

- [3] Hugues, M., Schmid, H., Romey, G., Duval, D., Frelin, C. and Lazdunski, M. (1982) Embo J. 9, 1039-1042.
- [4] Hugues, M., Romey, G., Duval, D., Vincent, J.P. and Lazdunski, M. (1982) Proc. Natl. Acad. Sci. USA 79, 1308-1312.
- [5] Pennefather, P., Lancaster, B., Adams, P.R. and Nicoll, R.A. (1985) Proc. Natl. Acad. Sci. USA 82, 3040-3044.
- [6] Miller, C., Moczydlowski, E., Latorre, R. and Phillips, M. (1985) Nature 313, 316-318.
- [7] Guggino, S.E., Green, N. and Sacktor, B. (1986) Biophys. J. 49, 577a.
- [8] Abia, A., Lobaton, C.D., Moreno, A. and Garcia-Sancho, J. (1986) Biochim. Biophys. Acta 856, 403-407.
- [9] Banks, B.E.C., Dempsey, C.E., Pearce, F.L., Vernon, C.A. and Wholley, T.E. (1981) Anal. Biochem. 116, 48-52.
- [10] Hugues, M., Duval, D., Kitabgi, P., Lazdunski, M. and Vincent, J.-P. (1982) J. Biol. Chem. 257, 2762-2769.
- [11] Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) J. Biol. Chem. 193, 265-275.
- [12] Fling, S.P. and Gregerson, D.S. (1986) Anal. Biochem. 155, 83-88.
- [13] Cook, N.S. and Haylett, D.G. (1985) J. Physiol. 358, 373-394.
- [14] Cook, N.S., Haylett, D.G. and Strong, P.N. (1983) FEBS Lett. 152m, 265-269.
- [15] Colquhoun, D., Rang, H.P. and Ritchie, J.M. (1974) J. Physiol. 240, 199-226.
- [16] Merril, C.R., Dunau, M.L. and Goldman, D. (1981) Anal. Biochem. 110, 201-207.
- [17] Hermann, A. (1986) Pflügers Arch. Suppl. 406, 204.